'6β-PROPANOYLOXY-3α-TIGLOYLOXYTROPANE, A NEW ALKALOID FROM DATURA INNOXIA

PAMELA J. BERESFORD and JACK G. WOOLLEY

School of Pharmacy, City of Leicester Polytechnic, Leicester LE1 9BH

(Received 5 November 1973)

Key Word Index—Datura innoxia; Solanaceae; tropane alkaloids; 6β -propanoyloxy- 3α -tigloyloxytropane.

Abstract – A new alkaloid, shown by spectroscopic and degradative means to be 6β -propanoyloxy- 3α -tigloyloxy-tropane has been isolated from *Datura innoxia* root. The synthesis of the natural and (+) base is described.

Datura innoxia Miller (Solanaceae) is a herbaceous white flowered annual which is classified along with the closely similar D. meteloides DC ex Dunal in Section Dutra of the genus. It has been extensively investigated in the past and has been the source of several new tigloyl esters.^{2,3} During routine analysis of the root for $3\alpha.6\beta$ -ditigloyloxytropane and $3\alpha.6\beta$ -ditigloyloxytropan- 7β -ol using the modified³ Evans and Partridge system.⁴ a small shoulder on the elution curve was noticed on the down-side of the 3\alpha.6\beta-ditiglovloxytropane peak. Although present in only a small quantity (0.003%) the new base, $\lceil \alpha \rceil_0^{23} = 0^\circ$, picrate m.p. 163° was isolated by bulking together material from several columns. The base $C_{16}H_{25}NO_4$ (MS) had M = 295 (6%) and a fragmentation pattern characteristic of the tropane nucleus. Since the base peak was at m/e = 94 it was assumed that the alkaloid was a dihydroxytropane derivative, and the peak at M⁺ - 99 was tentatively assigned to the loss of a tigloyl residue. The IR showed two ester carbonyl bands at 1740 and 1708 cm⁻¹ (unsat.), and C=C at 1630 cm⁻¹. Examination of the NMR spectrum (in CDCl₃ using TMS as internal standard) confirmed the presence of a di-substituted tropane nucleus with one tigloyl group, 6.7 and showed the following signals: $\tau = 4.49$ (dd due to the tropane C(6) proton coupling with the C(7) α and β protons); 4.89 (t tropane 3β proton) thus indicating the α orientation for the C(3) acyl group; 8.6.76 [hm tropane C(1) and (5)]: 7.43 (s N-Me); 3.10 (q tigloyl 3 β proton coupling with the β methyl); 8.13 (s tigloyl α methyl); 8·17 (d tigloyl β methyl partly overshadowed by the signal at $\tau = 8\cdot13$). In addition signals at = 7.67 (a MeCH₂) and 8.86 (t CH₂CH₂) suggested that the base was probably a propanoyl ester. Hydrolysis of the base gave two acids, propanoic and tiglic, identified by GLC and in the case of tiglic acid m.p. and m.m.p. The alkamine was esterified

¹ Blakeslee, A. F. (1959) *The Genus Datura* (Avery, A. G., Satina, S. and Rietsema, J., Eds.), p. 16, Ronald Press, New York.

² Evans, W. C. and Wellendorf, M. (1958) J. Chem. Soc. 1991.

³ Evans, W. C. and Wellendorf, M. (1959) J. Chem. Soc. 1406.

⁴ EVANS, W. C. and PARTRIDGE, M. W. (1949) J. Pharm. Pharmacol. 1, 593.

⁵ Blossey, E. C., Budzikiewicz, H., Ohashi, M., Fodor, G. and Dierassi, C. (1964) Tetrahedron 20, 585.

⁶ Evans, W. C. and Major, V. A. (1966) J. Chem. Soc. 1621.

⁷ BISHOP, R. J., FODOR, G., KATRITSKY, A. R., SOTI, F., SUTTON, L. E. and SWINBOURNE, F. J. (1966) J. Chem. Soc. 74.

⁸ PARELLO, J., LONGEVIALE, P., VETTER, W. and McCLOSKEY, J. A. (1964) Bull. Soc. Chim. Fr. 2787.

with tigloyl chloride and gave (-)- 3α , 6β -ditigloyloxytropane thereby indicating that it was (+)-tropan- 3α , 6β -diol which is known to have the 3R 6R configuration (structure).

6β-Propanoyloxy-3α-tigloyloxytropane.

The relative positions of the tigloyl and propanoyl moieties were determined in two ways. Partial hydrolysis 10,11 of (-)-3 α ,6 β -ditigloyloxytropane gave (-)-6 β -hydroxy-3 α -tigloyloxytropane in 34% yield. Esterification of the latter base with propanoyl chloride gave a product indistinguishable from the natural base (slightly higher picrate m.p.). Secondly, (\pm) -6 β -hydroxytropan-3-one was esterified with propanoyl chloride and reduced to the 3 α -ol using Raney nickel. The 3 α -tigloyl ester had NMR. MS and IR spectra and R_f values on TLC and partition columns very similar to the natural alkaloid.

The appearance of a propanoyl ester in the Solanaceae tropane series seems to be unique, although 3α -propanoyloxytropane has been isolated from *Bruguiera sexangula* and *B. exaristata* (Rhizophoraceae). Similarly, the hetero di-esters of dihydroxytropane are extremely rare, 6β -acetoxy- 3α -tigloyloxytropane and 6β -(2-methylbutanoyloxy)- 3α -tigloyloxytropane occurring in *D. sanguinea* R. and P., and *D. suaveolens* H. and B. ex Willd., respectively. Both these plants are in Section Brugmansia (perennial tree-daturas), a group quite different from the more common herbaceous daturas with perhaps the exception of *D. ceratocaula* Ort. The dextrorotatory enantiomer of dihydroxytropane appears to be a characteristic of the genus as a whole but (-)-tropan- 3α . 6β -diol (valerine) occurs only in Duboisia 4 as the alkamine of the alkaloid valeriodine.

EXPERIMENTAL

Optical rotations were measured using a Bendix NPL automatic polarimeter type 143. *Datura innoxia* plants were grown on open land in the University of Nottingham and were of the same strain (English sample) examined previously.³

Isolation of alkaloids. Dried, finely powered D. innoxia root (50 g) was mixed with 12.5 g Ca(OH)₂, moistened with H_2O (ca 25 ml) and exhaustively extracted with E_2O . After removal of the solvent, the residue in $CHCl_3$ (ca 2 ml) was transferred to a kieselguhr column (10 g) supporting 0.5 M phosphate buffer pH 6.8 (5 ml). Elution with petrol. (100 ml) gave a mixture of bases which was further resolved on a kieselguhr column (10 g) containing 5 ml 0.5 M phosphate buffer pH 5.6. The elution curve (titre, ml 0.005 N H_2SO_4 using bromocresol green indicator vs fraction (5 ml) number) showed three peaks designated A. B and C: in petrol. b.p. 40-60, A (sharp) 24 mg; B (shoulder) 1.8 mg; in E_1O . C (sharp) 10-1 mg. TLC Alumina (Merck), E_1O , detected with I_2/CCl_4 suggested that A and C were 32.6β -ditigloyloxytropane and 32.6β -ditigloyloxytropan-7 β -ol respectively. These bases were characterized as the picrates C (m.p., m.m.p. and IR). The separation was repeated several times in order to isolate sufficient B. Base B, colourless gum, C (and etectable). Picrate recryst, from EtOH/H₂O m.p. 163° (needles): IR V_{max}^{RBS} 1740, 1708, 1630, 1560, 1485, 1430, 1365, 1318, 1245, 1150, 1065, 907, 780, 735, 705

⁹ FODOR, G. and SOTI, F. (1965) J. Chem. Soc. 6830.

¹⁰ FODOR, G., VINCZE, I., TOTH, J., JANZSO, G. and LANG, K. U.S.P. 2,905,687; B.P. 824, 623.

¹¹ Evans, W. C. and Griffin, W. J. (1963) J. Chem. Soc. 4348.

¹² LODER, J. W. and RUSSELL, G. B. (1969) Aust. J. Chem. 22, 1271.

¹³ EVANS, W. C. and LAMPARD, J. F. (1972) Phytochemistry 11, 3292.

¹⁴ BARGER, G., MITCHELL, W. and MARTIN, W. F. (1937) J. Chem. Soc. 1820.

cm⁻¹; MS m/e with I% in parentheses, 42 (23), 55 (26), 57 (16), 81 (13), 82 (10), 83 (20), 94 (100), 95 (95), 96 (14), 122 (39), 138 (19), 195 (8), 196 (11), $M^+ = 295$ (6). Accurate mass measurement, $M^+ = 295 \cdot 1787$, $C_{16}H_{25}NO_4$ requires 295·1784. NMR (base regenerated from the picrate in CDCl₃ using TMS as internal standard), $\tau = 3\cdot 10$ (1H q J 7 Hz), 4·49 (1H dd J 3 and 5 Hz), 4·89 (1H t J 4 Hz), 6·76 (bm), 7·43 (3H s), 7·67 (2H q J 8 Hz), 8·13 (3H s), 8·17 (3H d J 4 Hz), 8·86 (3H t J 7 Hz).

Hydrolysis of base. The base (45 mg) was heated at 100° in a sealed tube with 5% Ba(OH)₂ (7 ml) for 2 hr. Cooled hydrolysate was acidified (80% H_2SO_4) and extracted with Et_2O (4 × 10 ml). The remaining aqu. phase was neutralized (solid BaCO₃), centrifuged and the supernatant liquid and washings were evaporated to dryness under reduced pressure. The dried residue was then heated under reflux with tigloyl chloride (0·2 ml) for 3 hr, ¹⁴ cooled, washed several times with Et_2O , basified, and extracted with CHCl₃. Evaluation of the product by TLC (Alumina, Et_2O) showed only one spot with an R_f identical to that of 3α , 6β -ditigloyloxytropane. The picrate (yield 2 mg) had m.p. and m.m.p. and IR identical to authentic (-)- 3α , 6β -ditigloyloxytropane picrate, and the base recovered from the picrate had $[\alpha]_D^{2^1} = -18\cdot46^\circ$ c.f. $-18\cdot82^\circ$ determined on the authentic base under the same conditions. The Et_2O extract of the acidified hydrolysate was examined by GLC on a 3 ft celite column containing 10% silicone oil and 2% orthophosphoric acid; N flow rate 30 ml/min, F.I. detector with temp. programme 30-160° (32°/min). After GLC, the Et_2O was allowed to evaporate and this deposited a few crystals of tiglic acid m.p. 62°.

Partial synthesis of 6β-propanoyloxy-3α-tigloyloxytropane. (-)-3α,6β-Ditigloyloxytropane (58 mg) in Me₂CO (1·5 ml) and 0·1 N NaOH 2·7 ml maintained at 22° for 4 hr, and then neutralized with HCl (10%). The Me₂CO was removed in vacuo and the remaining basified (NH₄OH) solution extracted with CHCl₃. Evaporation of the CHCl₃ gave an oily straw-coloured residue which was resolved on a partition column at pH 6·8. Elution with petrol. (75 ml) gave unchanged starting material, Et₂O (75 ml) gave 6β-tigloyloxytropan-3α-ol¹¹ and CHCl₃ gave (-)-6β-hydroxy-3α-tigloyloxytropane (14·8 mg), which was dried and heated under reflux (80-85°) with propanoyl chloride (0·2 ml), for 2 hr. The product was purified by partition column chromatography at pH 6·8 (yield 10 mg) $\left[\alpha\right]_D^{2/3} = 0^\circ$, NMR identical with natural base, picrate m.p. 168°.

 (\pm) -6β-Propanoyloxy-3α-tigloyloxytropane. Dry 6β-hydroxytropan-3-one (25 mg) was esterified with propanoyl chloride (0.5 ml) and the recovered base in EtOH reduced (at. press.) with H₂ in the presence of Raney Ni. The product (TLC pure 6β-propanoyloxytropan-3α-ol R_f 0.59 Alumina Et₂O:EtOH 4:1) was not isolated but esterified with tigloyl chloride and purified by the method outlined above to give (\pm) -6β-propanoyloxy-3α-tigloyloxytropane, NMR identical to natural base, picrate m.p. 169°.

Acknowledgements—One of us (P.J.B.) wishes to thank the Leicester Education Authority for a Research Assistantship. We are grateful to Dr. W. C. Evans, Department of Pharmacy, University of Nottingham, for the generous gift of D. innoxia root and (\pm) -6 β -hydroxytropan-3-one, Miss V. J. Charles and Mrs M. Warwick for valuable technical assistance, and also to Dr. H. Morris, Department of Chemistry, University of Cambridge, for the high resolution NMR spectra.